T TĂURĂ TURĂ TURĂ UTĂURĂ ÎN TĂURĂ ÎN TĂ

Seat No. _____

HAL-003-0493006

B. Sc. / M. Sc. (Applied Physics) (Sem.-III) (CBCS) Examination June - 2023 Modern Physics-II : Paper-XII (New Course)

> Faculty Code : 003 Subject Code : 0493006

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions:		(1) All questions are compulsory.			
			(2) 1	Numbers in the right indicate marks.	
1	(A)	Wri	Write Answers:		4
		(1)	Defin	e microscopic system.	
		(2)	Defin	e distribution function.	
		(3)	What	is significance of M-B distributive law.	
		(4)	Defin	e phase point.	
	(B)				
		(1)	Give	the example of macroscopic system.	
		(2)	Write	a note on classical and quantum statistics.	
	(C)	Write Answer of any one:		ver of any one :	3
		(1)	Comp	pare the M-B, B-E and F-D statistics.	
		(2)	Write	a note on three statistical distribution function	
			with n	necessary diagram.	
	(D)	D) Write Answer of any one :		ver of any one :	5
		(1)	Deriv	e an expression for probability distribution for a	
			Bose-	Einstein system of particles.	
		(2)	State	and explain the law of equipartition of Energy.	

1

HAL-003-0493006]

[Contd...

2	(A)	Write Answers:					
		(1) Define spontaneous emission.					
		(2) What is population inversion?					
		(3) Write the full form of LASER.					
		(4) Define radiative transition.					
	(B)	Write Answer of any one:	2				
		(1) Write the principle of LASER.					
		(2) Define inelastic atom-atom collision pumping method.					
	(C)	Write Answer of any one:	3				
		(1) Describe different pumping method used in LASER.					
		(2) Derive relation between Einstein's coefficients.					
	(D)	Write Answer of any one:	5				
		(1) Describe the construction and working of RUBY					
		LASER.					
		(2) Describe the construction and working of He-Ne					
		LASER.					
3	(A)	Write Answers:	4				
U	(11)	(1) What is π -mesons?	•				
		(2) Define isospin.					
		(2) Define hospin.(3) What is conservation law?					
		(4) How do we classify the elementary particles?					
	(B)	(F) The way we classify the clementary particles.(B) Write Answer of any one:					
	(D)	(1) Write a note on neutrino.	2				
		(1) Write a note on neutrino.(2) Define muons.					
	(C)	Write Answer of any one :	3				
	(C)	(1) Write a note on mediator of an interaction.	5				
		(1) Write a note on mediator of an interaction.(2) Describe the classification of elementary particles.					
	(D)	Write Answer of any one :	5				
	(D)	(1) Write a note on particle and anti particles.	U				
		(1) White a note on particle and and particles.(2) What are the four fundamental interactions in nature?					
4	(A)	Write Answers:	4				
-	(**)	(1) Write the importance of wave function.	-				
		(1) write the importance of wave function.(2) Define normalized wave function.					
		(2) Define normalized wave function?(3) What does represent in Schrodinger's equation?					
		(4) Write any two basic postulates of wave mechanics.					
НΔ	L-003	-0493006] 2 [Con	td				
	- 000	- [001					

	(B)	Writ	te Answer of any one :	2
		(1)	Write the time dependent Schrodinger's equation.	
		(2)	Define eigen function.	
	(C)	Writ	te Answer of any one:	3
		(1)	Derive the relation between phase velocity and group veloc	city.
		(2)	Describe various properties of wave functions.	
	(D)	Writ	te Answer of any one :	5
		(1)	Derive time independent Schrodinger's wave equation.	
		(2)	Derive an expression for the energy of particle in an	
			infinite square well potential.	
5	(A)	Write Answers:		
		(1)	What is the velocity of packets?	
		(2)	What makes quatum mechanics different from classical	
			mechanics?	
		(3)	Which materials are used in ruby LASER?	
		(4)	Which particels are gauge bosons?	
	(B)	Writ	te Answer of any one :	2
		(1)	Write the concept of Lepton conservation.	
		(2)	What are common decay modes of hyperons?	
	(C)	Writ	te Answer of any one:	3
		(1)	Derive an expression for de-Broglie wavelength.	
		(2)	Explain the semiconductor LASER with necessary	
			diagram.	
	(D)	Write Answer of any one :		5
		(1)	Derive an expression for probability distribution of	
			particles using F-D statistics.	
		(2)	Derive M-B distribution law of velocity.	